skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guo, F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract An overview is presented of our current understanding and open questions related to magnetic reconnection in solar flares and the near-sun (within around 20$$R_{s}$$ R s ) solar wind. The solar-flare-related topics include the mechanisms that facilitate fast energy release and that control flare onset, electron energization, ion energization and abundance enhancement, electron and ion transport, and flare-driven heating. Recent observations and models suggesting that interchange reconnection of multipolar magnetic fields within coronal holes could provide the energy required to drive the fast solar wind are also discussed. Recentin situobservations that reconnection in the heliospheric current sheet close to the sun drives energetic ions are also presented. The implications ofin situobservations of reconnection in the Earth space environment for understanding flares are highlighted. Finally, the impact of emerging computational and observational tools for understanding flare dynamics are discussed. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Abstract This short article highlights unsolved problems of magnetic reconnection in collisionless plasma. Advanced in-situ plasma measurements and simulations have enabled scientists to gain a novel understanding of magnetic reconnection. Nevertheless, outstanding questions remain concerning the complex dynamics and structures in the diffusion region, cross-scale and regional couplings, the onset of magnetic reconnection, and the details of particle energization. We discuss future directions for magnetic reconnection research, including new observations, new simulations, and interdisciplinary approaches. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. Abstract We present analysis of the plateau and late-time phase properties of a sample of 39 Type II supernovae (SNe II) that show narrow, transient, high-ionization emission lines (i.e., “IIn-like”) in their early-time spectra from interaction with confined, dense circumstellar material (CSM). Originally presented by W. V. Jacobson-Galán et al., this sample also includes multicolor light curves and spectra extending to late-time phases of 35 SNe with no evidence for IIn-like features at <2 days after first light. We measure photospheric phase light-curve properties for the distance-corrected sample and find that SNe II with IIn-like features have significantly higher luminosities and decline rates at +50 days than the comparison sample, which could be connected to inflated progenitor radii, lower ejecta mass, and/or persistent CSM interaction. However, we find no statistical evidence that the measured plateau durations and56Ni masses of SNe II with and without IIn-like features arise from different distributions. We estimate progenitor zero-age main-sequence (ZAMS) masses for all SNe with nebular spectroscopy through spectral model comparisons and find that most objects, both with and without IIn-like features, are consistent with progenitor masses ≤12.5M. Combining progenitor ZAMS masses with CSM densities inferred from early-time spectra suggests multiple channels for enhanced mass loss in the final years before core collapse, such as a convection-driven chromosphere or binary interaction. Finally, we find spectroscopic evidence for ongoing ejecta-CSM interaction at radii >1016cm, consistent with substantial progenitor mass-loss rates of ∼10−4–10−5Myr−1(vw < 50 km s−1) in the final centuries to millennia before explosion. 
    more » « less
    Free, publicly-accessible full text available October 8, 2026
  4. We present the photometric and spectroscopic analysis of five Type Ibn supernovae (SNe): SN 2020nxt, SN 2020taz, SN 2021bbv, SN 2023utc, and SN 2024aej. These events share key observational features and belong to a family of objects similar to the prototypical Type Ibn SN 2006jc. The SNe exhibit rise times of approximately 10 days and peak absolute magnitudes ranging from −16.5 to −19 mag. Notably, SN 2023utc is the faintest Type Ibn SN discovered to date, with an exceptionally lowr-band absolute magnitude of −16.4 mag. The pseudo-bolometric light curves peak at (1 − 10)×1042erg s−1, with total radiated energies on the order of (1 − 10)×1048erg. Spectroscopically, these SNe display a relatively slow spectral evolution. The early spectra are characterised by a hot blue continuum and prominent He Iemission lines. The early spectra also show blackbody temperatures exceeding 10 000 K, with a subsequent decline in temperature during later phases. Narrow He Ilines, which are indicative of unshocked circumstellar material (CSM), show velocities of approximately 1000 km s−1. The spectra suggest that the progenitors of these SNe underwent significant mass loss prior to the explosion, resulting in a He-rich CSM. Our light curve modelling yielded estimates for the ejecta mass (Mej) in the range 1 − 3 Mwith kinetic energies (EKin) of (0.1 − 1)×1050erg. The inferred CSM mass ranges from 0.2 to 1 M. These findings are consistent with expectations for core collapse events arising from relatively massive envelope-stripped progenitors. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  5. Abstract We have surveyed 21 reconnection exhaust events observed by Magnetospheric MultiScale in the low-plasma-βand high-Alfvén-speed regime of the Earth’s magnetotail to investigate the scaling of electron bulk heating produced by reconnection. The ranges of inflow Alfvén speed and inflow electronβecovered by this study are 800–4000 km s−1and 0.001–0.1, respectively, and the observed heating ranges from a few hundred electronvolts to several kiloelectronvolts. We find that the temperature change in the reconnection exhaust relative to the inflow, ΔTe, is correlated with the inflow Alfvén speed,VAx,in, based on the reconnecting magnetic field and the inflow plasma density. Furthermore, ΔTeis linearly proportional to the inflowing magnetic energy per particle, m i V Ax , in 2 , and the best fit to the data produces the empirical relation ΔTe= 0.020 m i V Ax , in 2 , i.e., the electron temperature increase is on average ∼2% of the inflowing magnetic energy per particle. This magnetotail study extends a previous magnetopause reconnection study by two orders of magnitude in both magnetic energy and electronβ, to a regime that is comparable to the solar corona. The validity of the empirical relation over such a large combined magnetopause–magnetotail plasma parameter range ofVA∼ 10–4000 km s−1andβe∼ 0.001–10 suggests that one can predict the magnitude of the bulk electron heating by reconnection in a variety of contexts from the simple knowledge of a single parameter: the Alfvén speed of the ambient plasma. 
    more » « less
  6. Abstract We present ultraviolet/optical/near-infrared observations and modeling of Type II supernovae (SNe II) whose early time (δt< 2 days) spectra show transient, narrow emission lines from shock ionization of confined (r< 1015cm) circumstellar material (CSM). The observed electron-scattering broadened line profiles (i.e., IIn-like) of Hi, Hei/ii, Civ, and Niii/iv/vfrom the CSM persist on a characteristic timescale (tIIn) that marks a transition to a lower-density CSM and the emergence of Doppler-broadened features from the fast-moving SN ejecta. Our sample, the largest to date, consists of 39 SNe with early time IIn-like features in addition to 35 “comparison” SNe with no evidence of early time IIn-like features, all with ultraviolet observations. The total sample includes 50 unpublished objects with a total of 474 previously unpublished spectra and 50 multiband light curves, collected primarily through the Young Supernova Experiment and Global Supernova Project collaborations. For all sample objects, we find a significant correlation between peak ultraviolet brightness and bothtIInand the rise time, as well as evidence for enhanced peak luminosities in SNe II with IIn-like features. We quantify mass-loss rates and CSM density for the sample through the matching of peak multiband absolute magnitudes, rise times,tIIn, and optical SN spectra with a grid of radiation hydrodynamics and non-local thermodynamic equilibrium radiative-transfer simulations. For our grid of models, all with the same underlying explosion, there is a trend between the duration of the electron-scattering broadened line profiles and inferred mass-loss rate: t IIn 3.8 [ M ̇ / (0.01Myr−1)] days. 
    more » « less
  7. Abstract The formation, development, and impact of slow shocks in the upstream regions of reconnecting current layers are explored. Slow shocks have been documented in the upstream regions of magnetohydrodynamic (MHD) simulations of magnetic reconnection as well as in similar simulations with thekglobalkinetic macroscale simulation model. They are therefore a candidate mechanism for preheating the plasma that is injected into the current layers that facilitate magnetic energy release in solar flares. Of particular interest is their potential role in producing the hot thermal component of electrons in flares. During multi-island reconnection, the formation and merging of flux ropes in the reconnecting current layer drives plasma flows and pressure disturbances in the upstream region. These pressure disturbances steepen into slow shocks that propagate along the reconnecting component of the magnetic field and satisfy the expected Rankine–Hugoniot jump conditions. Plasma heating arises from both compression across the shock and the parallel electric field that develops to maintain charge neutrality in a kinetic system. Shocks are weaker at lower plasmaβ, where shock steepening is slow. While these upstream slow shocks are intrinsic to the dynamics of multi-island reconnection, their contribution to electron heating remains relatively minor compared with that from Fermi reflection and the parallel electric fields that bound the reconnection outflow. 
    more » « less
  8. null (Ed.)
  9. Free, publicly-accessible full text available September 1, 2026
  10. Abstract The Pandora Software Development Kit and algorithm libraries perform reconstruction of neutrino interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at the Deep Underground Neutrino Experiment, which will operate four large-scale liquid argon time projection chambers at the far detector site in South Dakota, producing high-resolution images of charged particles emerging from neutrino interactions. While these high-resolution images provide excellent opportunities for physics, the complex topologies require sophisticated pattern recognition capabilities to interpret signals from the detectors as physically meaningful objects that form the inputs to physics analyses. A critical component is the identification of the neutrino interaction vertex. Subsequent reconstruction algorithms use this location to identify the individual primary particles and ensure they each result in a separate reconstructed particle. A new vertex-finding procedure described in this article integrates a U-ResNet neural network performing hit-level classification into the multi-algorithm approach used by Pandora to identify the neutrino interaction vertex. The machine learning solution is seamlessly integrated into a chain of pattern-recognition algorithms. The technique substantially outperforms the previous BDT-based solution, with a more than 20% increase in the efficiency of sub-1 cm vertex reconstruction across all neutrino flavours. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026